A dominant-negative mutant of human poly(ADP-ribose) polymerase affects cell recovery, apoptosis, and sister chromatid exchange following DNA damage.
نویسندگان
چکیده
Poly(ADP-ribose) polymerase [PARP; NAD+ ADP-ribosyltransferase; NAD+:poly(adenosine-diphosphate-D-ribosyl)-acceptor ADP-D-ribosyltransferase, EC 2.4.2.30] is a zinc-dependent eukaryotic DNA-binding protein that specifically recognizes DNA strand breaks produced by various genotoxic agents. To study the biological function of this enzyme, we have established stable HeLa cell lines that constitutively produce the 46-kDa DNA-binding domain of human PARP (PARP-DBD), leading to the trans-dominant inhibition of resident PARP activity. As a control, a cell line was constructed, producing a point-mutated version of the DBD, which has no affinity for DNA in vitro. Expression of the PARP-DBD had only a slight effect on undamaged cells but had drastic consequences for cells treated with genotoxic agents. Exposure of cell lines expressing the wild-type (wt) or the mutated PARP-DBD, with low doses of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) resulted in an increase in their doubling time, a G2 + M accumulation, and a marked reduction in cell survival. However, UVC irradiation had no preferential effect on the cell growth or viability of cell lines expressing the PARP-DBD. These PARP-DBD-expressing cells treated with MNNG presented the characteristic nucleosomal DNA ladder, one of the hallmarks of cell death by apoptosis. Moreover, these cells exhibited chromosomal instability as demonstrated by higher frequencies of both spontaneous and MNNG-induced sister chromatid exchanges. Surprisingly, the line producing the mutated DBD had the same behavior as those producing the wt DBD, indicating that the mechanism of action of the dominant-negative mutant involves more than its DNA-binding function. Altogether, these results strongly suggest that PARP is an element of the G2 checkpoint in mammalian cells.
منابع مشابه
Poly(ADP-ribose) polymerase (PARP-1) has a controlling role in homologous recombination.
Cells with non-functional poly(ADP-ribose) polymerase (PARP-1) show increased levels of sister chromatid exchange, suggesting a hyper recombination phenotype in these cells. To further investigate the involvement of PARP-1 in homologous recombination (HR) we investigated how PARP-1 affects nuclear HR sites (Rad51 foci) and HR repair of an endonuclease-induced DNA double-strand break (DSB). Seve...
متن کاملRelationship between DNA repair and formation of sister chromatid exchanges and chromatid aberrations under the influence of poly(ADP-ribose) polymerase inhibition by 3-aminobenzamide.
The mechanisms of formation of sister chromatid exchanges (SCEs) and chromosome aberrations following inhibition of poly(ADP-ribose) polymerase by 3-aminobenzamide were studied in Chinese hamster ovary cell lines deficient in different repair pathways. The results confirm earlier findings that (a) the 'spontaneous' SCEs are formed due to the incorporated BrdU in the DNA, (b) 'spontaneous' and i...
متن کاملDeletion of the nuclear isoform of poly(ADP-ribose) glycohydrolase (PARG) reveals its function in DNA repair, genomic stability and tumorigenesis.
Poly(ADP-ribose) metabolism, mediated mainly by poly(ADP-ribose) polymerase (PARP) 1 and poly(ADP-ribose) glycohydrolase (PARG), regulates various cellular processes in response to genotoxic stress. PARP1 has been shown to be important in multiple cellular processes, including DNA repair, chromosomal stability, chromatin function, apoptosis and transcriptional regulation. However, whether PARP1...
متن کاملInhibition of poly(ADP-ribose)polymerase stimulates extrachromosomal homologous recombination in mouse Ltk-fibroblasts.
Poly(ADP-ribose)polymerase (PARP) is an abundant nuclear enzyme activated by DNA breaks. PARP is generally believed to play a role in maintaining the integrity of the genome in eukaryote cells via anti-recombinogenic activity by preventing inappropriate homologous recombination reactions at DNA double-strand breaks. While inhibition of PARP reduces non-homologous recombination, at the same time...
متن کاملStudy of the Effect of MMC on the Sister Chromatid Exchange in the Human Lymphocytes
Some environmental mutagenic agents cause genomic instability and increase susceptibility of DNA damage. One of them is mitomycin C which is connected to DNA as an alkylating factor and affects susceptible cells to reduction reactions. This drug is used in chemotherapy and treatment of tumors. Study of genomic instability in the presence of different concentrations of MMC can show susceptibilit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 92 11 شماره
صفحات -
تاریخ انتشار 1995